Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems

BACKGROUND Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe3O4) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behav...

متن کامل

Phenothiazine Derivative-Accelerated Microbial Extracellular Electron Transfer in Bioelectrochemical System

In bioelectrochemical system (BES) the extracellular electron transfer (EET) from bacteria to anode electrode is recognized as a crucial step that governs the anodic reaction efficiency. Here, we report a novel approach to substantially enhance the microbial EET by immobilization of a small active phenothiazine derivative, methylene blue, on electrode surface. A comparison of the currents gener...

متن کامل

Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems.

Bridging microbes and electrode to facilitate the extracellular electron transfer (EET) is crucial for bio-electrochemical systems (BESs). Here, a significant enhancement of the EET process was achieved by biomimetically fabricating a network structure of graphene oxide nanoribbons (GONRs) on the electrode. This strategy is universal to enhance the adaptability of GONRs at the bio-nano interfac...

متن کامل

Effect of oxygen on the per‐cell extracellular electron transfer rate of Shewanella oneidensis MR‐1 explored in bioelectrochemical systems

Extracellular electron transfer (EET) is a mechanism that enables microbes to respire solid-phase electron acceptors. These EET reactions most often occur in the absence of oxygen, since oxygen can act as a competitive electron acceptor for many facultative microbes. However, for Shewanella oneidensis MR-1, oxygen may increase biomass development, which could result in an overall increase in EE...

متن کامل

A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp. PCC6803

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biotechnology for Biofuels

سال: 2017

ISSN: 1754-6834

DOI: 10.1186/s13068-017-0929-3